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1 Introduction
The conventional concept of rationality used in economics is linked to the optimal mode of
behavior —that is, people act in their own best interests, given their information. From the
Bayesian viewpoint, subjective probabilities should be assigned to every prospect (e.g., the
prospect of a player choosing a certain strategy in a certain game). Based on Harsanyi’s
[39] seminal work on games with incomplete information, players in games can resolve the
exhausted uncertainty that exists in games in the same way as nonstrategic uncertainty
being resolved in standard decision theory; thus, each player in a game has a subjective
probabilistic belief about the exhausted uncertainty facing the player. In the context of a
game, the classic notion of “Bayesian rationality”requires a player to choose an action that
maximizes his expected payoff, under his probabilistic belief about the players’ epistemic
types and the actual play of the game (see, e.g., Aumann [10] and Dekel and Siniscalchi
[29]). To put it in a slightly different way,

a player is not Bayesian rational if, on self-reflection and introspection, the
player knows/believes that he can choose a replacement of his action to attain
a higher expected payoff.

That is, a rational player should be aware of the consequences by choosing differently, and
decide not to make a different choice of strategy. This definition of Bayesian rationality
manifests the epistemic precondition for the player’s rational behavior; the definition is
harmonious with the standard one under the usual assumption that the player knows his own
belief and using strategy, although it calls for self-awareness and introspection on purpose
(see Proposition 1(b)).1

A salient feature of the notion of Bayesian rationality is that an individual player makes
his own optimal decision, in the absence of coalitional considerations. To see this point,
consider the coordination game (where the first player picks a row and the second player
picks a column):

a b
a 1, 1 0, 0
b 0, 0 2, 2

1In an influential paper “Backward Induction and Common Knowledge of Rationality,” Aumann [11]
adopted a definition of rationality on the basis of self-knowledge: a player is “rational” if it is not the case
that he knows that he would be able to do better; see also Samet’s [71, Section 4] belief-based definition of
doxastic rationality and Heller’s [43, Definition 3] knowledge-based definition of “profitable joint deviation.”
In the philosophy of mind and epistemology, no rational agent could be incapable of self-knowledge (see, e.g.,
Shoemaker [74], Korsgaard [49] and Gilboa [34] for more discussions).
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Intuitively, a Bayesian rational player can choose to play the strategy a if he believes that the
opponent player plays the strategy a; alternatively, it is not the case that this player, on self-
reflection and introspection, believes he can attain a higher expected payoff by unilaterally
changing his using strategy a. In this noncooperative game, the notion of Bayesian rationality
does not rule out playing the strategy a; indeed, both players jointly playing the strategy a
constitutes a Nash equilibrium. However, it is clear that the players should coordinate to
play the strategy b, but avoid playing the strategy a, from the coalition’s viewpoint.
The coalitional behavior has been recognized as an important issue in economics and

social sciences; real-life examples include cartels, trade blocs, political party formation, spe-
cial interest groups, public goods provision, social networks and matchings, and so on. It is
important and fundamental to explore what is a “rational”behavior for a coalition in non-
cooperative games, e.g., the coordination game.2 In this paper, we offer an epistemological
definition of “Bayesian coalitional rationality” (henceforth, Bayesian c-rationality), in the
same way as the individual version of Bayesian rationality. Just like rational individuals,
groups should be rational. We define Bayesian c-rationality as a mode of behavior that no
group of players wishes to change —that is, every coalition is “rational” in a game. More
specifically,

a coalition is not Bayesian rational if members of the coalition commonly
believe that they can change their actions, through an (implicit) coalitional
agreement, to attain mutually beneficial expected payoffs.

The notion defines, from the inside, a kind of the rational behavior that is compatible with
the access to information possessed by coalitions in a society.3 Interactive beliefs among a
coalition are crucial for the concept of coalitional rationality. To facilitate their behavior,
the coalition members typically need to have common understandings of mutual behavior

2Liu et al. [52] made use of the idea of “coalitional rationality”to define a stable matching with incomplete
information, which requires to attain common knowledge among a blocking pair that no profitable pairwise
deviation exists. Their analysis, however, refrains from considering deviations by larger groups of agents.
Kobayashi [47] made use of the similar idea to study equilibrium contracts for syndicates with differential
information, by assuming “an agent declares his intention to join a blocking coalition only when it is common
knowledge for the coalition members that he would intend to join.”See also Acemoglu et al. [1], Ambrus
and Argenziano [5], and Jullien [46] for more applications.

3Human beings have a distinct form of self-consciousness that enables us to be aware of the motivations
or potential reasons on which we are tempted to act, to evaluate those potential reasons, and to be moved to
act accordingly. According to a traditional philosophical view, the concept of rationality is naturally tied to
a form of introspection, one that makes us aware of, and capable of evaluating, our reasons themselves. The
formalism is also related to Simon’s [75, p. 278] jargon of “subjective”rationality (i.e., a mode of behavior
that is rational, given the perceptual and evaluational premises of the subject). The rational behavior for a
coalition in the context of complex interactions is innately subjective, and is unlikely to be “objective”(as
viewed by the experimenter).
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and interpersonal reasoning (see, e.g., Schelling [73], Lewis [51] and Chwe [28]). To illustrate
this point, again consider the coordination game. In this noncooperative game, the players
are coalitionally “irrational”to play the strategy a, because it is a “common belief”among
the two players that, as a coalition, they can attain mutually beneficial expected payoffs by
changing the status quo choice of the strategy a.4 The key idea here is based on a coalitional
reasoning argument that players can look for a “coalitional agreement”in the sense of Hume
[44], by which the coalition members confine play to a subset of their strategies, to avoid
certain “inferior”strategies in noncooperative games.5 This is different from an “equilibrium”
argument, because playing a is a Nash equilibrium behavior given that each player is Bayesian
rational and has a correct belief about the opponent’s strategy choice (see Aumann and
Brandenburger [13]). The main purpose of this paper is to offer an epistemological definition
of coalitional rationality in the context of a game where players are with the Bayesian view
of the world, being aware of the effects of coalitional reasoning.
From an epistemic perspective, Bayesian rationality for an individual player is referred

to a state of affairs: it is not the case that the player is attentively aware that an alternative
choice of strategy can attain a higher expected payoff. The coalitional version of Bayesian
rationality captures the similar idea for coalitional reasoning: it is not the case that coalition
members share a common belief that they could improve coalition members’expected payoffs
by coordinating their moves; that is, the coalition does not wish to change its behavior, in
light of coalition-wise common belief that mutually beneficial gains exist by an (implicit)
coalitional agreement.6 The notion of coalitional rationality needs to call for the coalition-
wise common-belief presumption, because, with the Bayesian view of the world, each coalition
member’s behavior and beliefs will be typically affected if an agreement is made by a coalition.
In fact, actions undertaken deliberately by a group of players are related to some particular
epistemic state, which often interferes with the other states under consideration of players
in the group. That is, each player in the group has to think about what would happen in

4An event is common belief/knowledge among a group of players, if it is believed/known to all players in
the group that it is believed/known to all players in the group, and so on ad infinitum (see Aumann [9, 12]).
As usual, we use the term “knowledge”to mean true belief with no possibility for error, and use the shorthand
term “common knowledge of rationality”to stand for “rationality and common belief of rationality.”

5As Hume [44] put it in A Treatise of Human Nature, “... this may properly enough be called a convention
or agreement betwixt us, though without the interposition of a promise ... Two men, who pull the oars of a
boat, do it by an agreement or convention, though they have never given promises to each other.”

6In the spirit of Bernheim et al.’s [20] notion of “coalition-proof Nash equilibrium,”we impose a mild
“credibility”condition that requires any meaningful change of strategies in a coalitional agreement be jus-
tified at least by the principle of individual Bayesian rationality. Technically, the requirement purports to
overcome the notorious problem of emptiness, typified by Condorcet’s paradox, under the core-like locking
arrangements; e.g., in the Prisoner’s Dilemma game, the noncooperative Nash strategy can be sustained by
our definition of Bayesian c-rationality, because the agreement on the Pareto-optimal cooperative strategy
profile is not “credible.”

4



hypothetical circumstances, in one of which every player takes into account what the group
of players would do and would contemplate in the hypothetical circumstances.7 Thus, it is
necessary to consider what a coalition member believes about not only the contemplation
of joint movements, but also what the other coalition members believe. One important
ingredient of our approach is how to formally express that it is a common belief among
members of a coalition that mutually beneficial gains exist by a coalitional agreement.8

To deal with the hypothetical coalitional reasoning in a Bayesian paradigm, we carry out
our analysis in an epistemic framework in which each player has a “conditional probability
system”(CPS) belief at a type (Definition 1). A CPS belief of a player specifies the family of
probabilistic beliefs about the players’strategies and types in all contingencies; even in the
case of an unexpected or hypothetical event, a player must have a probabilistic assessment
of opponents’strategies contingent on that event (e.g., the coalition member must have a
probabilistic belief about the opponents’behavior contingent on a coalitional agreement).
Our work is closely related to Ambrus [4], and provides complementary support to his

approach to coalitional rationality. Ambrus [4] offered a wide range of epistemic definitions
of coalitional γ-rationality, and obtained the concept of coalitional γ-rationalizability by
“rationality and common certainty of coalitional γ-rationality”(where γ is a coalitional best
response operator). Despite its great advantages in terms of generality and simplicity, his
formalism is less comprehensive from an epistemic perspective, because it does not provide a
full epistemic expression of coalitional rationality. In other words, the notion of γ-rationality,
although defines the scope of “conceivable”γ-rational strategic behavior, does not explicate
what the γ-rational epistemic state of affairs is. The major issue is that the shortcut operator
γ is not based on assumptions about players’behavior and beliefs in the possible worlds
associated with coalitions; for instance, the conjectures used in the “sensible”operator γ are
not linked to epistemic states. Nevertheless, the missing part of the expression is critical
in the epistemic analysis. Examples such as backward induction and iterated elimination of
weakly dominated strategies show the hidden assumptions in the causal arguments about
players’beliefs and rationality at epistemic states are crucial (see, e.g., Brandenburger [21],

7To coordinate its interrelated actions, a group of players needs to have recourse to “common knowledge”
(see, e.g., Schelling [73], Lewis [51], Chwe [28], and Rubinstein [70]). Each of group members is willing to
do so only if he knows that other group members are willing to do so. Members need to have knowledge of
each other, knowledge of that knowledge, knowledge of the knowledge of that knowledge, and so on. See also
Halpern and Moses [40] and Fagin et al. [31, Chapter 6] for extensive discussions on reasoning about the
states of knowledge of the components of a distributed system. In particular, they showed common knowledge
plays a critical role in reaching an agreement and coordinating actions in a distributed environment.

8In the classic article “The Use of Knowledge in Society,”Hayek (1945, p.530) pointed out that “we must
show how a solution is produced by the interactions of people each of whom possesses only partial knowledge.
To assume all the knowledge to be given to a single mind in the same manner in which we assume it to be
given to us as the explaining economists is to assume the problem away and to disregard everything that it
is important and significant in the real world.”
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Dekel and Siniscalchi [29], and Perea [64] for extensive discussions). Moreover, there could
be the “self-referential”problem in Ambrus’s [4] framework, if the operator γ is viewed as
part of the description of a state of the world. One particular troubling issue is how the
states can be used to capture knowledge/belief about the model itself (see, e.g., Aumann
[9, 10, 12] and Brandenburger and Dekel [23]), such as the expression that the operator γ is
common knowledge/belief among a coalition.
To overcome the aforementioned shortcomings in coalitional γ-rationality, we offer a more

delicate definition of coalitional rationality in a type-structure framework, which explicates
how a player interacts with other players within a coalition if a coalitional agreement is made
in game situations (see Definition 2). Our analytical framework is immunized from the “self-
referential”problem, because the framework accommodates what the players believe about
the information, knowledge and the behavior of coalition members at states of the world.
In the special case of singleton coalitions, our definition of Bayesian c-rationality is har-

monious with the definition of Bayesian rationality in terms of the behavioral implication
(Proposition 1(a)) and, if the player knows his own “primary” belief and using strategy,
our definition of Bayesian c-rationality is equivalent to the definition of Bayesian rationality
(Proposition 1(b)). The definition of Bayesian c-rationality for the case of singleton coalitions
gives rise to a novel notion of individual rationality under the behavior and type uncertainty
(Definition 2

′
).

For the individual case, common knowledge of Bayesian rationality is closely related
to Bernheim [19] and Pearce [63] notion of “rationalizability”: the notion of (correlated)
rationalizability can be characterized by “common knowledge of Bayesian rationality”—that
is, “Bayesian rationality and common belief of Bayesian rationality”(cf. Tan and Werlang
[77] and Brandenburger and Dekel [22]). For coalitional rationality, we obtain a similar result:
common knowledge of Bayesian c-rationality provides an epistemic characterization for the
solution concept of “Bayesian coalitional rationalizability”in Luo and Yang [53] (Proposition
4). We also discuss the solution concepts of Nash equilibrium and strong Nash equilibrium
in a fairly flexible framework where players are allowed to have introspective beliefs about
their own strategies and types (Propositions 2 and 3).
It is worth noting that, according to the notion of Bayesian c-rationality, we need to check

2n−1 feasible coalitions (i.e., all subsets of n players except the empty set) and, for a coalition
J , Πj∈J

(
2|Sj | − 1

)
possible coalitional deviations (i.e., all restrictions of strategies in Sj for

each coalition member j ∈ J except the empty set). Due to the enormous complexity of
coalitional reasoning, one may wonder whether a Bayesian c-rational state exists or not; one
might be curious about how we express epistemic states about collective beliefs and intention
for “rational”coalitions in complex interactions, given that coalitions do not have minds or
brains. Proposition 4(b) asserts that, for any finite game, we can find the desirable state(s) by
constructing a finite CPS type structure. Our study contributes to a better understanding of
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the coalition’s behavior in game situations, by illuminating the informational preconditions
how interactive beliefs are distributed among coalition members.
The rest of this paper is organized as follows. Section 2 provides an example to illustrate

the main idea and results in this paper. Section 3 introduces the preliminary notation
and definitions. Section 4 defines the concept of Bayesian c-rationality. Section 5 offers
an epistemic analysis of Nash equilibrium and strong Nash equilibrium in our analytical
framework. Section 6 studies the behavioral implication of common knowledge of Bayesian
c-rationality. Section 7 is concluding remarks. To facilitate reading, all the proofs are
relegated to the Appendix.

2 An illustrative example
Example 1. Consider a two-person symmetric game (where the first player picks a row and
the second player picks a column):

a2 b2 c2

a1 2, 2 3, 2 0, 0
b1 2, 3 3, 3 0, 0
c1 0, 0 0, 0 1, 1

.

Intuitively, confining the players’play to a subset of strategies {a1, b1} × {a2, b2} is in their
mutual interest. The solution concepts of “(Bayesian) coalitional rationalizability”defined
in Ambrus [3] and Luo and Yang [53] yield the same outcome set of (Bayesian) coalitional
rationalizable strategy profiles: {a1, b1} × {a2, b2}.
Next, we explain the concept of “Bayesian coalitional rationality”in an epistemic frame-

work. For simplicity, we consider a type-structure model for this game, which specifies a set
of “types” for each player, and for each type, a (probabilistic) belief over the opponents’
strategies and types. That is, each player i = 1, 2 has two types ti and t′i (i.e., Ti = {ti, t′i});
for i, j = 1, 2 and i 6= j, player i’s belief at ti is βi (ti) = 1 ◦ (aj; tj) and player i’s belief at
t′i is βi (t

′
i) = 1 ◦

(
bj; t

′
j

)
. A state —a specification of the players’strategies and the players’

types—is said to be Bayesian c-rational if no group of players commonly believes that there
exists a mutually beneficial agreement that excludes the group’s using strategy profile at
the state. For example, the state (b1, b2; t′1, t

′
2) is Bayesian c-rational, because at this state

both players commonly believe that they are playing (b1, b2) and each receives the highest
expected payoff of 3. However, the state (a1, a2; t1, t2) is not Bayesian c-rational, because
at this state the two players commonly believe that they would be willing to confine their
play to the mutually beneficial agreement {b1}× {b2}, instead of playing (a1, a2). Moreover,
at state (b1, b2; t′1, t

′
2), the players commonly believe in (b1, b2; t′1, t

′
2), and hence Bayesian
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c-rationality is commonly known at (b1, b2; t′1, t
′
2). In Proposition 4(a), we show a player

plays a Bayesian c-rationalizable strategy in Luo and Yang [53] under common knowledge of
Bayesian c-rationality in a “belief-rich”type structure (cf. Example 4 in Section 6.2).
The Bayesian c-rationalizable strategy profile (a1, a2) cannot be attained under common

knowledge of Bayesian c-rationality in the above type-structure model. We can, however, find
another type-structure model such that common knowledge of Bayesian c-rationality yields
all the Bayesian c-rationalizable strategy profiles, including (a1, a2). For example, consider a
type structure: Ti = {ti, t′i}, β1 (t1) = 1◦ (a2; t2), β1 (t′1) = 1◦ (b2; t′2), β2 (t2) = 1◦ (a1; t′1) and
β2 (t′2) = 1◦(b1; t1). In this type structure, the states (a1, a2; t′1, t2), (a1, b2; t′1, t

′
2), (b1, a2; t1, t2)

and (b1, b2; t1, t
′
2) are Bayesian c-rational. (For instance, the set {(a1, a2; t′1, t2) , (a1, b2; t′1, t

′
2) ,

(b1, a2; t1, t2) , (b1, b2; t1, t
′
2)} is commonly believed at the state (a1, a2; t′1, t2). For each player

i = 1, 2, there exists a state in this set such that player i plays ai and gets the highest
expected payoff of 3. Therefore, the two players commonly believe there is no mutually
beneficial agreement excluding the profile (a1, a2) at state (a1, a2; t′1, t2).) Thus, (a1, a2),
(a1, b2), (b1, a2) and (b1, b2) are attained under common knowledge of Bayesian c-rationality.
In Proposition 4(b), we show the set of Bayesian c-rationalizable strategy profiles can be
attained by common knowledge of Bayesian c-rationality in a (finite) type-structure model.

3 Preliminaries
Consider a finite game:

G = (I, {Si}i∈I , {ui}i∈I),
where I is a finite set of players, Si is a finite set of i’s pure strategies (as usual, S = ×i∈ISi),
and ui : S → R is i’s payoff function. We say J is a coalition if J is a nonempty subset
of I. For each coalition J , let SJ = ×j∈JSj and S−J = ×i∈I\JSi. For any si ∈ Si and
any probability distribution µ over S−i = ×j∈I\{i}Sj, player i’s expected payoff function is
defined by Ui(si, µ) =

∑
s−i∈S−iµ (s−i)ui(si, s−i).

3.1 Type structure with conditional probability systems

Let X be a topological space endowed with the Borel sigma-algebra ΣX . The set of Borel
probability measures on X with the weak convergence topology is denoted by ∆ (X). Carte-
sian product sets are endowed with the product topology and the product sigma-algebra.

Definition 1. A conditional-probability-systems type structure (or simply a type structure)
for the game G = (I, (Si, ui)i∈I) is a tuple T (G) =

(
I, (Si, ui)i∈I , (Ti, βi)i∈I

)
, where each Ti
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is a (nonempty) compact metric space and each βi : Ti → ∆∗ (S × T ) is continuous.9

That is, a type structure specifies, for each player i ∈ I and each type ti ∈ Ti, a “condi-
tional probability system (CPS)”on the strategies that the players can choose and the types
that the players are endowed with —that is, through βi, each type ti is associated with a CPS
belief concerning states of the world: players’strategies and types.
A type ti for player i induces a CPS, denoted by fi (ti), on the opponent players’strategies

(that is, for each nonempty subset B ⊆ S, fi (ti) |B−i ∈ ∆ (S−i) is the marginal distribution
of βi (ti) |B×T ∈ ∆ (S × T ), denoted by fi (ti) |B−i = margS−iβi (ti) |B×T ). Because a type’s
primary probabilistic beliefs on the opponents’strategies and on states play a particularly
important role, it is convenient to introduce the specific notation for them: f 0

i (ti) = fi (ti) |S−i
and β0

i (ti) = βi (ti) |S×T .

Remark 1. The analytical framework of type structure is by now commonly used in the
epistemic game theory. The notion of types is due to Harsanyi [39]. When types are associ-
ated with ordinary probability measure, Mertens and Zamir [56], Brandenburger and Dekel
[23], and among others constructed a “universal”type structure that embeds all type struc-
tures under the assumption that the set of states of nature is a compact topological space.
Battigalli and Siniscalchi [15] constructed the CPS counterpart of “universal” type space.
Like Aumann [10], Aumann and Brandenburger [13] and Brandenburger and Dekel [22], our
analytical framework is fairly flexible and allows players to have beliefs about their own
strategies and types (see, e.g., Dekel and Siniscalchi [29, Section 12.2.6.3]). In particular, we
do not impose the assumption that each player knows his own type and using strategy (cf.,
e.g., psychological games (Geanakoplos et al. [33]), the absent-minded driver (Piccione and
Rubinstein [65]), and the Kahaneman-Tversky man (Lambert-Mogiliansky et al. [50])).10

In the type structure T (G), S × T is the state space. A strategy-type pair (s, t) ∈ S × T
is called a state (of the world). An event E is a measurable subset of S×T . Player i believes

9The notation ∆∗ (S × T ) denotes the class of “conditional probability systems”on S × T (with condi-
tioning the collection of nonempty subsets of finite strategy profles), in which a conditional probability system
(CPS) in ∆∗ (S × T ) is defined as a conditional-probability function µ| on S × T that satisfies Bayes’rule,
i.e., if µ| ∈ ∆∗ (S × T ), then for every nonempty subset B ⊆ S (i) µ|

B×T ∈ ∆ (S × T ) and µ|
B×T (B × T ) = 1;

(ii) for every set A ⊇ B and E ∈ ΣS×T satisfying E ⊆ B × T , µ|A×T (E) = µ|B×T (E)µ|A×T (B × T ). See,
e.g., Renyi [69] and Myerson [57, 58].
10This kind of introspective beliefs are also related to the concepts of self (e.g., Jungian archetypes of the

human psyche) and self-knowledge (e.g., the ancient Greek maxim “know thyself”and the ancient Chinese
philosopher Lao Tzu’s saying “Knowing others is wisdom, knowing yourself is Enlightenment”). Applications
abound in the economics literature, e.g., identity (Akerlof and Kranton [2]), self-confidence (Benabou and
Tirole [17, 18]), self-control (Gul and Pesendorfer [38]), multi-self (Fudenberg and Levine [32]), rational
addiction (Becker and Murphy [16]), and nudge (Thaler and Sunstein [78]).
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E at state (s, t) if β0
i (ti) (E) = 1, that is, i attributes probability 1 (in terms of the primary

probabilistic belief) to the event E. Let

Bi (E) = {(s, t) ∈ S × T : i believes E at (s, t)} .

Let
BJ (E) =

⋂
j∈J
Bj (E)

denote the event “E is mutually believed among coalition J ,”and let

CBJ (E) = BJ (E) ∩BJ (BJ (E)) ∩ · · ·

denote the event “E is commonly believed among coalition J .”(For the grand coalition I,
we use a shorthand notation: CBE = CBI (E).) For a type profile tJ ∈ TJ = ×j∈JTj, let
tJ ⊆ S × T denote the finest event commonly believed by tJ ; that is, the set tJ is the
“minimal state subspace”which is belief-closed by all the members in coalition J at the state
of mind tJ .11 It is well known that CBJ (E) =

{
(s, t) ∈ S × T : tJ ⊆ E

}
(see, e.g., Zamir

and Vassilakis [82]). For the special case of singleton coalition J = {j}, we also write tj

for the minimal state subspace tJ at tj. Obviously, if player j knows his primary belief,
then j knows event E if and only if j “introspectively” knows E; that is, for tj ∈ Tj, if
β0
j (tj)

({
(s′, t′) ∈ S × T : β0

j

(
t′j
)

= β0
j (tj)

})
= 1, then β0

j (tj) (E) = 1 iff tj ⊆ E.
A player is said to be Bayesian rational if he chooses an action that maximizes his expected

payoff given his information (see, e.g., Aumann [10] and Dekel and Siniscalchi [29]). More
specifically, player i is Bayesian rational at state (s, t) if si is a best response to f 0

i (ti) —that
is, si ∈ BRi (ti) where

BRi (ti) =
{
ŝi ∈ Si : Ui(ŝi, f

0
i (ti)) ≥ Ui(s

′
i, f

0
i (ti)) ∀s′i ∈ Si

}
.

Let
Ri = {(s, t) ∈ S × T : i is Bayesian rational at (s, t)}

denote the event “player i is Bayesian rational.”
For eventE and player i, let si (E) = {si ∈ Si : (s, t) ∈ E} and ti (E) = {ti ∈ Ti : (s, t) ∈ E}.

For coalition J , define sJ (E) = ×j∈Jsj (E) and s−J (E) = ×i∈I\Jsi (E). For brevity, we write
s (E) = sI (E).

11That is, the subset tJ ⊆ S × T is the smallest state subspace (with respect to set inclusion) such that
β0j (tj)

(
tJ

)
= 1, ∀j ∈ J , ∀ (s, t) ∈ tJ (cf., e.g., Zamir [81] and Maschler, Solan and Zamir [55, Chapter

10.4] for extensive discussions). The minimal state subspace tJ is an analog notion of the “finest common
coarsening”of partitional information structures (in Aumann [9]) for the coalition J .
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4 Bayesian coalitional rationality: a definition
We formulate a notion of “Bayesian c-rationality”to prescribe, in the context of a game where
players are with the Bayesian view of the world, a kind of rational behavior for coalitions
that is compatible with the access to information. The notion of Bayesian c-rationality is
defined as a mode of behavior that no group of players wishes to change: it is impossible
for members of a coalition to have a common belief that they could attain higher expected
payoffs by confining to a set of strategies, in a “credible”way.

Definition 2. In the type structure T (G), coalition J is Bayesian rational at state (s, t)
if sJ ∈ AJ whenever the nonempty product subset AJ ⊆ SJ satisfies the following two
conditions:

(C1) [κ-Profitability] for all j ∈ J and (s′, t′) ∈ tJ , if s′j /∈ Aj or fj
(
t′j
)
|
AJ\{j}×s−J

(
tJ

) 6=
fj
(
t′j
)
|
s−j

(
tJ

),12 then there exists ŝj ∈ Sj such that

Uj

(
s′j, fj

(
t′j
)
|
s−j

(
tJ

)
)
< Uj

(
ŝj, fj

(
t′j
)
|
AJ\{j}×s−J

(
tJ

)
)
;

(C2) [κ-Credibility] for all j ∈ J and aj ∈ Aj \ sj

(
tJ

)
, there exists t′j ∈ tj

(
tJ

)
such that

Uj

(
aj, fj

(
t′j
)
|
AJ\{j}×s−J

(
tJ

)
)
≥ Uj

(
s′j, fj

(
t′j
)
|
AJ\{j}×s−J

(
tJ

)
)
∀s′j ∈ Sj.

Let <J = {(s, t) ∈ S × T : J is Bayesian rational at (s, t)}.

In Definition 2, “J is Bayesian rational at (s, t)”says that coalition members in J share a

common belief that no credible profitable coalitional deviation, from the initial set s
(
tJ

)
,

precludes jointly playing strategies sJ of coalition members at the state (s, t). In other words,
a coalition is Bayesian rational at a state if coalition members commonly believe that they
are playing strategies within each vital coalitional agreement AJ of the coalition, to which

12For the singleton coalition J = {j}, decree fj
(
t′j
)
|
AJ\{j}×s−J

(
tJ

) = fj
(
t′j
)
|
s−j

(
tJ

).
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players in the coalition would be willing to confine their play.13 In particular, κ-Profitability
entails that at every state in the minimal state subspace tJ , every coalition member expects
a higher payoff if a coalitional agreement is made; κ-Credibility ensures each incremental
strategy aj ∈ Aj \ sj

(
tJ

)
satisfies individual rationality. Our formalism of Bayesian c-

rationality is genuinely intersubjective in nature; it is explicitly and entirely based on the
assumptions about coalition members’behavior and (common) beliefs at epistemic states,
in terms of what the players in coalitions believe about each other’s strategies, information,
and beliefs.
Although the set AJ in Definition 2 can be interpreted as a variant of the “coalitional

best response” set in Ambrus [4], the notions of Bayesian c-rationality and γ-rationality
differ in some important aspects.14 Because the operator γ contains only restricted subsets of
strategies, the notion of γ-rationality entails an excessive amount of attention to a wide range
of “initial agreements”—all product supersets of s

(
tJ

)
that satisfy “closed under rational

behavior (curb)”in the sense of Basu and Weibull [14] (see also Grandjean et al. [36] for this
requirement for coalitions); that is, it requires players in J to be logically omniscient with
respect to a special class of “curb”agreements hinging on a “behavior-richness”framework.
By contrast, our notion of Bayesian c-rationality merely requires the initial agreement under
consideration to be the “exact”product set s

(
tJ

)
(i.e., the “finest”agreement commonly

believed by coalition J at its epistemic state tJ), without the requirement of “closed under
rational behavior.”
One important feature of Definition 2 is that the concept entails coalition-common-belief

preconditions: (i) coalition members in J share a common belief that play is in the initial

agreement s
(
tJ

)
, and (ii) coalition members in J share a common belief that the con-

templating joint movement from the agreement s
(
tJ

)
to a new coalitional agreement AJ

is a vital deviation. Interactive belief plays a crucial role in all accounts of joint actions by
rational players in coalitions; it allows players to explore the mutually beneficial opportunity
by joint movements (see, e.g., Schelling [73], Lewis [51], Chwe [28] and Sugden [76] for more
discussions). The first coalition-common-belief condition (i) is harmonious with the prereq-

13Coalition members are not allowed to pool their private information in our noncooperative framework.
The epistemic prerequisite for a vital coalitional deviation is that the coalition members share a common
knowledge that the deviation is mutually profitable. This idea has the same spirit of Wilson’s [79] concept
of coarse core in an exchange economy with asymmetric information.
14To see this, let s

(
tJ

)
V AJ denote “coalition J’s κ-credible and κ-profitable movement from s

(
tJ

)
to a coalitional agreement AJ in Definition 2”. Coalition J is Bayesian rational at state (s, t) iff sJ ∈
γ
(
s
(
tJ

)
, J
)
≡ ∩

AJ⊆SJ ; s
(
tJ

)
VAJ

AJ .
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uisite for Ambrus’s [4] γ-rationality: there is common certainty among J that play is in the
initial agreement. The second coalition-common-belief condition (ii) is an implicit precon-
dition for the changing process from the initial agreement to a new coalitional agreement in
the concept of coalition rationality.
The classic definition of individual rationality requires that an agent ought to choose

an optimal action with respect to his probabilistic belief about the exhaustive uncertainty,
irrespective of whether the agent is capable of knowing precisely his epistemic type (which
is part of the structure of this agent is uncertain about in a model of decision making under
uncertainty). For the special case of singleton coalitions, Proposition 1 below establishes
a relationship between the definitions of Bayesian c-rationality and Bayesian rationality;
under the commonly used assumption that the player knows his own primary belief and
using strategy, the two notions indeed coincide.

Proposition 1. Consider a type structure T (G). Suppose J = {j}.

(a) (s, t) ∈ <J iff sj ∈ BRj

(
tj

)
where

BRj

(
tj

)
=
{
s′j ∈ Sj : ∃ (s′, t′) ∈ tj s.t. s′j ∈ BRj

(
t′j
)}
;

thus, sj (<J) ⊆ sj (Rj).

(b) If j knows his own using strategy sj and primary belief β0
j (tj) at state (s, t) —i.e.,

β0
j (tj)

({
(s′, t′) ∈ S × T : s′j = sj and β0

j

(
t′j
)

= β0
j (tj)

})
= 1, then <J = Rj.

Proposition 1(a) brings out a novel way to define individually rational behavior in en-
vironments where players hold introspective beliefs about their own behavior and epistemic
types.

Definition 2′. In the type structure T (G), player i is Bayesian c-rational at state (s, t) if

si ∈ BRi

(
ti

)
. Let <i = {(s, t) ∈ S × T : i is Bayesian c-rational at (s, t)}.

That is, a singleton player is Bayesian c-rational if it is not the case that the player is self-
aware he could do better by a replacement of his playing strategy. The alternative definition
of Bayesian rationality expounds the precondition for the player’s rational behavior, in terms
of inner perception and introspection about how the player’s behavior and mental states.
Proposition 1(a) asserts that the behavioral implication of Bayesian c-rationality in Definition
2′ must fall within the scope of Bayesian rationality; notably, <i = <{i}.

13



Remark 2. Definition 2′ entails that, on self-reflection and introspection, a rational player (as
a singleton coalition) cannot refute that he is doing the optimal action given his imperfect
information about his own type; it is in the same spirit of Gilboa et al.’s [35] “subjective”
definition of rationality in a multiple prior model: the decision maker cannot be convinced
that he is wrong in making a decision.15 Our formalism shares a common feature of coalitional
γ-rationality in Ambrus [4]; that is, the classic definition of individual rationality is distinct
from the notion of coalitional rationality under the restriction of singleton coalition, because
the former one is silent on the epistemic precondition for rational behavior. As Example
2 below demonstrates, an individually rational state might not be rational in the sense of
Definition 2′, because the individual player (unlike an omniscient analyst) fails to know his
type at that state.

Example 2. Consider a two-person game G (where the first player picks a row and the
second player picks a column):

a2 b2

a1 1, 0 0, 0
b1 0, 0 1, 0

Consider a type structure T (G) as follows:

T1 = {t1, t′1} and T2 = {t2};

βi : Ti → ∆∗ (S × T ) (for i = 1, 2) satisfying β0
1 (t′1) = 1 ◦ (b1, a2; t1, t2) and

β0
1 (t1) = β0

2 (t2) = 1 ◦ (b1, b2; t1, t2).

In this example, (a1, b2; t′1, t2) ∈ R1, but (a1, b2; t′1, t2) /∈ <1.
Intuitively, because player 1 does not know his own type t′1, he wrongly believes in t1;

player 1 has the state subspace t′1 = {(b1, a2; t1, t2) , (b1, b2; t1, t2)}. Thus, the singleton
player 1 is not Bayesian c-rational to play a1 at t′1, because a1 /∈ BRi

(
t′i

)
—i.e., player

1 cannot find a reason to justify playing a1. Nevertheless, player 1 is Bayesian rational to
play a1 at t′1, simply because a1 is a best response to f 0

1 (t′1), even though the player wrongly
believes in t1 and hence should refrain from playing a1.

15This kind of definition is in the spirit of Gilboa’s [34] ascriptive theory: it describes a decision maker’s
behavior, but can also be ascribed to the decision maker without refuting itself.
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5 (Strong) Nash equilibrium and Bayesian coalitional
rationality

In this section, we discuss the solution concepts of Nash equilibrium and strong Nash equi-
librium in our framework where players are allowed to have beliefs about their own strategies
and types, through the lens of the notion of Bayesian coalitional rationality.

5.1 Nash Equilibrium

Aumann and Brandenburger [13] observed, under the assumption that each player knows his
own strategy choice and (probabilistic) belief, that if all the players are Bayesian rational
and mutually know the strategy choices of the others, then the players’choices constitute a
Nash equilibrium in the game being played. We extend this result to environments where
the players have introspective beliefs about their strategy choices and beliefs.

Proposition 2. Consider a type structure T (G).

(a) If every player is Bayesian c-rational and “introspectively knows” that they are
playing s at state (s, t), then s is a (pure-strategy) Nash equilibrium in G. That
is, if (s, t) ∈ <i and s

(
ti

)
= {s} ∀i ∈ I, then ui (si, s−i) > ui (s

′
i, s−i) ∀s′i ∈ Si

∀i ∈ I.

(b) Suppose each player knows his own using strategy and primary belief at state (s, t).
If each player is Bayesian rational and knows the opponents are playing s−i, then s
is a (pure-strategy) Nash equilibrium in G. That is, if (s, t) ∈ Ri and f 0

i (ti) (s−i) =
1 ∀i ∈ I, then ui (si, s−i) > ui (s

′
i, s−i) ∀s′i ∈ Si ∀i ∈ I.

5.2 Strong Nash Equilibrium

Aumann [7] introduced the notion of “strong Nash equilibrium”by checking deviations by
every conceivable coalition, instead of checking deviations by every individual player only.
A strategy profile s∗ ∈ S is a (pure-strategy) strong Nash equilibrium if, for every coalition
J ⊆ I and for every profile sJ ∈ SJ there exists a coalition member j ∈ J such that
uj (s∗) > uj

(
sJ , s

∗
−J
)
. That is, an equilibrium is strong if no coalition, taking the actions of

its complement as given, can jointly deviate in a way that benefits all of its members. For
the notion of strong Nash equilibrium, we need a stronger version of Bayesian coalitional
rationality by removing the Credibility condition in Definition 2.
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Definition 3. In a type structure T (G), coalition J is strong Bayesian rational at state (s, t)
if sJ ∈ AJ whenever the nonempty product subset AJ ⊆ SJ satisfies the κ-Profitability con-
dition: for all j ∈ J and (s′, t′) ∈ tJ , if s′j /∈ Aj or fj

(
t′j
)
|
AJ\{j}×s−J

(
tJ

) 6= fj
(
t′j
)
|
s−j

(
tJ

),
then there exists ŝj ∈ Sj such that

Uj

(
s′j, fj

(
t′j
)
|
s−j

(
tJ

)
)
< Uj

(
ŝj, fj

(
t′j
)
|
AJ\{j}×s−J

(
tJ

)
)
.

Let <strongJ = {(s, t) ∈ S × T : J is strong Bayesian rational at (s, t)}.

Proposition 3. Consider a type structure T (G). If each coalition is strong Bayesian rational
and “commonly knows”players are playing s at state (s, t), then s is a (pure-strategy) strong

Nash equilibrium. That is, if (s, t) ∈ <strongJ and s
(
tJ

)
= {s} for all coalitions J ⊆ I,

then for every coalition J ⊆ I and for every profile s′J ∈ SJ there exists a coalition member
j ∈ J such that uj (s) > uj (s′J , s−J).

6 Bayesian coalitional rationalizability and common knowl-
edge of Bayesian coalitional rationality

In this section, we study the behavioral implication of “common knowledge of Bayesian c-
rationality”—that is, the strategic implication of “Bayesian c-rationality and common belief
of Bayesian c-rationality.”

6.1 Bayesian coalitional rationalizability

In noncooperative games, Ambrus [3] first offered a game-theoretic solution concept of “coali-
tional rationalizability”to capture the idea of common knowledge of coalitional rationality.
This concept is defined through an “internal coalitional reasoning”:

... players look for agreements to avoid certain strategies, without specifying play
within the set of non-excluded strategies ... A restriction is supported if every group
member always (for every possible expectation) expects a higher payoff if the agree-
ment is made than if he instead chooses to play a strategy outside the agreement.
(Ambrus [3, p.904])

Luo and Yang [53] proposed an alternative solution concept of “Bayesian coalitional ratio-
nalizability”(henceforth, Bayesian c-rationalizability) for situations in which, in pursuit of
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mutually beneficial interests, the players in a coalition (i) evaluate their payoff expectations
by Bayesian updating, if a coalitional agreement is made, and (ii) contemplate various plausi-
ble deviations —that is, the validity of deviation is checked not only against restricted subsets
of strategies as in Ambrus [3], but also against arbitrary sets of strategies. The following
example shows the main feature of Bayesian c-rationalizability.

Example 3. Consider the two-person symmetric game (where the first player picks a row
and the second player picks a column):

a2 b2 c2

a1 3, 0 0, 3 0, 2
b1 0, 3 3, 0 0, 0
c1 2, 0 0, 0 1, 1

From the Bayesian viewpoint, the two players would like to confine their play to a subset of
strategies {a1, b1}×{a2, b2} (which is also called a “coalitional agreement”). Let i, j ∈ {1, 2}
and j 6= i. Intuitively, if player i assigns a prior probability of less than 0.5 to the j’s
strategy aj, then the player achieves an expected payoff of less than 1.5 by playing ci. It is
beneficial for the players to reach the coalitional agreement because each can guarantee a
higher expected payoff of 1.5. If player i assigns a prior probability of more than or equal to
0.5 to aj, then it is also beneficial for the players to reach the coalitional agreement instead
of playing ci because in this case each player can achieve a higher expected payoff under the
updated belief. (Without appealing for Bayes’rule, player i could achieve an expected payoff
of 2 by playing ci, higher than some expected payoff that might be obtained by playing ai
or bi after the coalitional agreement is made. Due to this difference, Ambrus’s [3] notion
of coalitional rationalizability does not rule out strategy ci.) The notion of Bayesian c-
rationalizability yields the outcome set {a1, b1} × {a2, b2}. This notion reflects the idea that
a group of players can coordinate their play to achieve mutually beneficial outcomes, because
of common knowledge of the fact that the players in group are Bayesian rational and aware
of mutually beneficial arrangement of strategies.
Formally, consider a game G. For player j, let ∆∗ (S−j) denote the set of all condi-

tional probability systems (CPSs) on finite set S−j of the opponents’strategy profiles. For
nonempty subset A ⊆ S, let

∆∗A (S−i) =
{
µ| ∈ ∆∗ (S−i) : µ|S−i(A−i) = 1

}
.

For nonempty product subsets A,B ⊆ S, we say a coalition JAB is a “feasible coalition from
A to B”if B = BJAB × A−JAB .

Definition 4 (Luo and Yang [53]). A nonempty product subset R ⊆ S is a coalitional
rationalizable set (CRS) if R V R′ only for R′ = R, where for R 6= ∅, we define R V R′
as: ∃ a feasible coalition JRR′ , ∀j ∈ JRR′ such that
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(1) [Profitability] ∀rj ∈ Rj, ∀µ| ∈ ∆∗R (S−j), if rj /∈ R′j or µ|R−j 6= µ|R′−j , then
Uj(rj, µ|R−j) < Uj(sj, µ|R′−j) for some sj ∈ Sj, and

(2) [Credibility] ∀r′j ∈ R′j\Rj, there exists µ| ∈ ∆∗R (S−j) such that Uj(r′j, µ|R′−j) ≥
Uj(sj, µ|R′−j) ∀sj ∈ Sj.

A strategy ri ∈ Ri is said to be a Bayesian c-rationalizable strategy for player i; let R∗
denote the set of Bayesian c-rationalizable strategy profiles in game G.

That is, a CRS R is a (nonempty) product set of pure strategies from which no group
of players would like to make a “profitable”and “credible”deviation. With the restriction
of |JRR′ | = 1, Definition 4 yields a correlated version of rationalizability (see Luo and Yang
[53]).

6.2 Common knowledge of Bayesian coalitional rationality

Consider a type structure T (G). Let

AJ
(
tJ

)
=
{
AJ ⊆ SJ : deviation AJ × s−J

(
tJ

)
from s

(
tJ

)
satisfies Credibility in Definition 4

}
denotes the collection of coalition J’s credible agreements at epistemic state tJ . We say
coalition J is belief-rich-for-credible-deviations (BRCD) at t ∈ T , if for each AJ ∈ AJ

(
tJ

)
,

j ∈ J and aj ∈ Aj \ sj

(
tJ

)
, there exists t′j ∈ tj

(
tJ

)
such that

Uj

(
aj, fj

(
t′j
)
|
AJ\{j}×s−J

(
tJ

)
)
≥ Uj

(
s′j, fj

(
t′j
)
|
AJ\{j}×s−J

(
tJ

)
)
∀s′j ∈ Sj.

In words, the BRCD property requires any credible deviation from s
(
tJ

)
via J in game G

satisfies κ-Credibility in the type structure T (G). A type structure T (G) is BRCD if every
coalition is BRCD at every type profile t ∈ T . Let

◦
< =

⋂
J⊆I<J ,

denote the event “every coalition is Bayesian rational in Definition 2.”For subset E ⊆ S×T ,
let projS (E) denote the projection of E on S; that is, projS (E) = {s ∈ S : (s, t) ∈ E}. We
are now in a position to present a main result of this paper.
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Proposition 4. (a) For any BRCD T (G), projS

(
◦
< ∩ CB

◦
<
)
⊆ R∗. (b) There exists a

finite BRCD T (G) such that projS

(
◦
< ∩ CB

◦
<
)

= R∗.

In Proposition 4, we need to consider a type structure model, in which each player is
rich in beliefs such that no credible deviation in Definition 4 is excluded from consideration.
This sort of belief-richness condition in the analytical framework is commonly used for the
epistemic analysis of game-theoretic solution concepts, for example, extensive-form rational-
izability in a complete CPS type structure model in Battigalli and Siniscalchi [15] and iterated
weak dominance in a complete “lexicographic conditional probability system (LCPS)”type
structure model in Brandenburger et al. [24].16 Remarkably, our belief-richness condition
accommodates the finite model of type structure; Proposition 4(b) shows the existence of a
finite BRCD type structure that is compatible with the assumption “common knowledge of
Bayesian coalitional rationality.”

The following example shows that, without imposing the belief-richness condition, com-
mon knowledge of Bayesian c-rationality may generate a strategy profile that is not Bayesian
c-rationalizable.

Example 4. Consider again the two-person game in Example 3:
a2 b2 c2

a1 3, 0 0, 3 0, 2
b1 0, 3 3, 0 0, 0
c1 2, 0 0, 0 1, 1

Consider a type structure T (G): for i, j = 1, 2 and i 6= j, Ti = {ti}, β0
i (ti) = 1◦ (c1, c2; t1, t2)

and fi (ti) |{aj ,bj} = 1 ◦ aj. Because no coalitional deviation from s
(
t
)

= {c1} × {c2} is
κ-credible in T (G), (c1, c2; t1, t2) is a Bayesian c-rational state; hence, Bayesian c-rationality
is commonly known at (c1, c2; t1, t2). But, (c1, c2) is not a Bayesian c-rationalizable strategy
profile, because confining the players’play to a subset of strategies {a1, b1} × {a2, b2} is in
their mutual interest (cf. Example 3). The main issue here is that, in this type structure
T (G), the CPS beliefs of each player are rather sparse; no rich beliefs support the desirable
deviation {a1, b1} × {a2, b2} from {c1} × {c2} to be κ-credible in T (G). That is, the type
structure T (G) fails to satisfy the BRCD condition.

16Although this kind of “belief richness” is crucial to our epistemic analysis, an analogous concept does
not appear in Ambrus’s [4] framework, because of making use of the shortcut operator γ. In Ambrus [4],
the prominent operator γ∗ implicitly requires a sort of belief-richness condition: a player must consider
all possible conjectures in the game, each of which supports a best response strategy (excluded from the
restricted set of strategies).
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Proposition 4(a) asserts this Bayesian c-rationalizable profile (c1, c2) cannot be attained
by common knowledge of Bayesian c-rationality in a BRCD type structure. To see this point,
consider a type structure T̂ (G) such that T̂1 = {t1, t′1}, T̂2 = {t2, t′2} and

β0
1 (t1) = 1 ◦ (a1, a2; t1, t2);

β0
1 (t′1) = 1 ◦ (b1, b2; t′1, t

′
2);

β0
2 (t2) = 1 ◦ (b1, a2; t′1, t2);

β0
2 (t′2) = 1 ◦ (a1, b2; t1, t

′
2);

f1 (t1) |{b2,c2} = f1 (t′1) |{a2,c2} = 1 ◦ c2;

f2 (t2) |{a1,c1} = f2 (t′2) |{b1,c1} = 1 ◦ c1.

It is easy to verify that T̂ (G) is a BRCD type structure. For example, for the grand coali-
tion {1, 2}, t = {(a1, a2; t1, t2) , (b1, b2; t′1, t

′
2) , (b1, a2; t′1, t2) , (a1, b2; t1, t

′
2)} ∀t ∈ T . Con-

sider a credible deviation {b1, c1} × {c2} from s
(
t
)

= {a1, b1} × {a2, b2}, player 1 can use
f1 (t1) |{c2} = 1 ◦ c2 to justify playing c1 and player 2 can use f2 (t′2) |{b1,c1} = 1 ◦ c1 to justify
playing c2. Hence, {b1, c1} × {c2} is κ-credible in T̂ (G).
Because every player attains the highest expected payoff of 3 at every state in t , there is

no κ-profitable deviation by changing the play of player(s). Therefore, Bayesian c-rationality
is commonly known across t . Consequently, in the BRCD type structure T̂ (G), common
knowledge of Bayesian c-rationality yields the set of Bayesian c-rationalizable strategy pro-
files: {a1, b1} × {a2, b2}.

With the restriction of singleton coalitions, Definition 4 yields the definition of (corre-
lated) rationalizability. As an immediate corollary of Theorem 1, we obtain a characterization
for rationalizability without appealing to the belief-richness condition. Let R denote the set
of (correlated) rationalizable strategy profiles in G, and let

< = ∩i∈I<i
denote the event “every player is Bayesian c-rational in Definition 2

′
.”

Corollary 1. (a) In any type structure T (G), projS (< ∩ CB<) ⊆ R. (b) There is a type
structure T (G) such that projS (< ∩ CB<) = R.

Remark 3. The BRCD condition in Proposition 4 ensures the credibility requirement for
coalitional deviations in Definition 2 (cf. Bernheim et al. [20]). The BRCD condition is
no longer needed if we remove the credibility requirement in Definition 2. However, like
Aumann’s [7] notion of strong Nash equilibrium, no “strong Bayesian c-rational”state (De-
finition 3) exists in any type structure for a certain game (e.g., the Prisoner’s Dilemma).

20



7 Concluding remarks
The study of how groups of players act in their mutually beneficial interest in social environ-
ments is of great importance in economics and social sciences; for example, Paul Samuelson’s
[72] “The Pure Theory of Public Expenditure,”Garrett Hardin’s [42] “The Tragedy of the
Commons”andMancur Olson’s [61] “The Logic of Collective Action”have provided examples
to demonstrate the difference between the individual rationality and collective rationality.
In a broader sense, there is a variety of theories about the collectively rational behavior

in game situations. The pattern of Nash equilibrium behavior prevails, in the absence of
coalitional considerations, if each player is Bayesian rational and has a correct belief about
the opponents’strategy choices (see Aumann and Brandenburger [13]). In an equilibrium
approach, Aumann [7] and Bernheim et al. [20] offered the solution concepts of strong Nash
equilibrium and coalition-proof Nash equilibrium for the collectively rational behavior, which
takes into account the interests of coalitions in games. In a non-equilibrium paradigm, Bern-
heim [19] and Pearce [63] demonstrated the rationalizable strategic behavior is obtained if
each player is Bayesian rational and Bayesian rationality is common belief among the play-
ers (see also Tan and Werlang [77]); the notion of rationalizable rational behavior is defined
in a purely noncooperative environment, without taking into consideration the coalition’s
behavior in strategic interactions.
In this paper, we have offered a definition of coalitional rationality —i.e., Bayesian c-

rationality— in the context of noncooperative games where players are with the Bayesian
view of the world, being aware of the effects of coalitional reasoning. The notion of Bayesian
c-rationality prescribes a mode of behavior that no group of players wishes to change —that is,
it is not the case that the coalition members commonly believe that mutually beneficial gains
exist by a (credible) coalitional agreement. Our approach adheres to the conventional point
of view that the game model under consideration fully describes any aspect of coalitional
bargaining and coalitional negotiation. Accordingly, although players cannot make any ex-
plicit/binding form of coalitional agreements, they can undertake a deductive reasoning by
means of tacit/implicit coalitional agreements existing in a noncooperative environment.17

From an epistemic perspective, exploring how to make “rational”states possible involving
the distinctive mode of coalitional reasoning is theoretically important and profound in the
context of games (see also Chant and Ernst [25] more discussions). Such an epistemic analysis
can help in better understanding when a particular solution concept is applicable in practical

17There are other approaches to coalitional behavior in the literature (see, e.g., Ray and Vohra [68]). For
instance, Greenberg [37, Chapter 5], Chwe [27], Mariotti [54], Ray and Vohra [66, 67], and Xue [80] studied
models for coalitional negotiation/bargaining in which coalitions act publicly (and thus consequences are
publicly observed) or coalitions make binding “point” agreements (rather than the nonbinding coalitional
agreements used in this paper). See also Newton [59, 60] for an in-depth study of coalitional behavior from
the point of view of evolutionary game theory.
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circumstances. Ambrus [4] made an attempt to present a definition of coalitional γ-rationality
by highlighting the precondition for the coalitionally rational behavior. Along the lines of
the epistemic game theory program (see Aumann and Brandenburger [13], Aumann [10, 11],
Brandenburger [21], Dekel and Siniscalchi [29], and Perea [64]), we have offered a more
comprehensive definition for coalitional deliberations in noncooperative games (Definition
2). Like Aumann [9, 8, 10, 11] and Aumann and Brandenburger [13], we carry out our
analysis within an arbitrary model, including finite and infinite models.
Our approach sheds light on the preconditions for coalitionally rational behavior in the

context of a noncooperative game where members of coalitions are with the Bayesian view of
the world. With restricting the size of coalition to one, our definition of Bayesian c-rationality
is harmonious with the individual Bayesian rationality (Proposition 1). By using the notion
of Bayesian c-rationality, we have provided an epistemic analysis of the solution concepts such
as (strong) Nash equilibrium (Aumann [7]) and Bayesian coalitional rationalizability (Luo
and Yang [53]). In particular, we have established epistemic conditions for the notions of
Nash equilibrium and strong Nash equilibrium in situations where players are allowed to have
introspective beliefs about their own strategies and types (Propositions 2 and 3); we have
offered an epistemic characterization of the notion of Bayesian coalitional rationalizability
in terms of “common knowledge of Bayesian c-rationality”(Proposition 4).
In closing, we mention some possible extensions. In this paper, we define Bayesian c-

rationality by assuming players are subjective expected utility maximizers and coordinate
their play to achieve mutual gains through nonbinding and tacit agreements on joint actions.
Alternatively, we can consider the coalitional preferences as the aggregation of the preferences
of coalition members; see, for example, Hara et al. [41] for a coalitional expected multi-utility
theory. The extension of this paper to games with different modes of coalitional behavior
is an intriguing subject for further research; cf. Asheim [6], Chen et al. [26], and Epstein
[30] for related work on rationalizability under general preferences. The exploration of the
notion of coalitional rationality in dynamic settings and incomplete information settings is
also an important research topic for further study.
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8 Appendix: Proofs
Proof of Proposition 1. (a) The “only if” part: Suppose (s, t) ∈ <J where J = {j}.
It suffi ces to show that the set BRj

(
tj

)
is nonempty and satisfies κ-Profitability and

κ-Credibility in Definition 2.
Step 1. Assume, in negation, that BRj

(
tj

)
= ∅. Because f 0

j

(
t′j
) (

s−j

(
tj

))
= 1 for

any (s′, t′) ∈ tj , s′j is not a best response to f
0
j

(
t′j
)

= fj
(
t′j
)
|
s−j

(
tj

); that is,

Uj

(
s′j, fj

(
t′j
)
|
s−j

(
tj

)
)
< Uj

(
ŝj, fj

(
t′j
)
|
s−j

(
tj

)
)
for some ŝj ∈ Sj.

Now, define

BRj

(
tj

(
tj

))
=
{
ŝj ∈ Sj : ∃t′j ∈ tj

(
tj

)
s.t. ŝj ∈ BRj

(
t′j
)}
.

Observe that every nonempty subset Aj ⊆ BRj

(
tj

(
tj

))
satisfies κ-Profitability and κ-

Credibility. By Definition 2, sj ∈ Aj ⊆ BRj

(
tj

(
tj

))
for all nonempty subsets Aj ⊆

BRj

(
tj

(
tj

))
because (s, t) ∈ <J . Therefore, BRj

(
tj

(
tj

))
= {sj}; thus, sj ∈ BRj

(
t′j
)

for all t′ ∈ tj

(
tj

)
. But, by Definition 2, sj ∈ sj

(
tj

)
because sj

(
tj

)
6= ∅ also satisfies

κ-Profitability and κ-Credibility. Hence, sj ∈ BRj

(
tj

)
. A contradiction.

Step 2. Since BRj

(
tj

)
⊆ sj

(
tj

)
, BRj

(
tj

)
satisfies κ-Credibility. Assume, in

negation, that BRj

(
tj

)
6= ∅ fails to satisfy κ-Profitability. Since fj

(
t′j
)
|
AJ\{j}×s−J

(
tj

) =

fj
(
t′j
)
|
s−j

(
tj

) = f 0
j

(
t′j
)
∀t′j ∈ Tj when J = {j}, there exists (s′, t′) ∈ tj such that

s′j /∈ BRj

(
tj

)
and

Uj
(
s′j, f

0
j

(
t′j
))
≥ Uj

(
s′′j , f

0
j

(
t′j
))
∀s′′j ∈ Sj.

Therefore, s′j ∈ BRj

(
tj

)
. A contradiction.

The “if” part: Suppose sj ∈ BRj

(
tj

)
. It suffi ces to show that BRj

(
tj

)
⊆ Aj

whenever Aj 6= ∅ satisfies κ-Profitability and κ-Credibility in Definition 2. Assume, in
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negation, that there exists s′j ∈ BRj

(
tj

)
such that s′j /∈ Aj and Aj 6= ∅ satisfies κ-

Profitability and κ-Credibility. Since s′j ∈ BRj

(
tj

)
, there exists (s′, t′) ∈ tj such that

s′j ∈ BRj

(
t′j
)
. Therefore, s′j ∈ sj

(
tj

)
and s′j /∈ Aj. Because Aj 6= ∅ satisfies κ-Profitability,

Uj

(
s′j, fj

(
t′j
)
|
s−j

(
tj

)
)
< Uj

(
ŝj, fj

(
t′j
)
|
s−j

(
tj

)
)
for some ŝj ∈ Sj.

But, since f 0
j

(
t′j
)

= fj
(
t′j
)
|
s−j

(
tj

), s′j /∈ BRj

(
t′j
)
. A contradiction.

(b) Let (s, t) ∈ S × T . Since β0
j (tj)

({
(s′, t′) ∈ S × T : s′j = sj and β0

j

(
t′j
)

= β0
j (tj)

})
=

1, tj ⊆
{

(s′, t′) ∈ S × T : s′j = sj and β0
j

(
t′j
)

= β0
j (tj)

}
. Therefore, f 0

j

(
t′j
)

= f 0
j (tj) ∀t′j ∈

tj

(
tj

)
and sj

(
tj

)
= {sj}. Thus, BRj

(
tj

)
= BRj (tj) ∩ {sj}. By Proposition 1(a),

(s, t) ∈ <J iff sj ∈ BRj (tj). �

Proof of Proposition 2. (a) Let i ∈ I and (s, t) ∈ <i. By Proposition 1(a), si ∈ BRi

(
ti

)
.

Since s
(
ti

)
= {s}, there exists (s, t′) ∈ ti such that si ∈ BRi (t

′
i). Again, by s

(
ti

)
=

{s}, f 0
i (t′i) = 1 ◦ s−i ∀t′ ∈ tj

(
ti

)
. Therefore, ui (si, s−i) > ui (s

′
i, s−i) ∀s′i ∈ Si ∀i ∈ I.

(b) Let i ∈ I and (s, t) ∈ Ri. Because i knows his own using strategy, primary belief

and the opponents are playing s−i at state (s, t), tj ⊆ {s} × T , i.e., s
(
ti

)
= {s}. By

Proposition 1(b), <i = Ri. By Proposition 2(a), s is a Nash equilibrium in G. �

Proof of Proposition 3. Suppose that (s, t) ∈ <strongJ and s
(
tJ

)
= {s} for all coalitions

J ⊆ I. Assume, in negation, that s is not a strong Nash equilibrium, then there exist a
coalition J and ŝJ ∈ SJ such that uj (s) < uj (ŝJ , s−J) for all j ∈ J . We show AJ = {ŝJ}
satisfies the κ-Profitability. For all j ∈ J and (s′, t′) ∈ tJ , s′j = sj and fj

(
t′j
)
|
s−j

(
tJ

) =

1 ◦ s−j because J commonly believes that players play s at (s, t). Therefore, for all j ∈ J
and (s′, t′) ∈ tJ ,

Uj

(
s′j, fj

(
t′j
)
|
s−j

(
tJ

)
)

= uj (s) < uj (ŝJ , s−J) = Uj

(
ŝj, fj

(
t′j
)
|
AJ\{j}×s−J

(
tJ

)
)
.

Since (s, t) ∈ <strongJ , sJ ∈ AJ and hence sJ = ŝJ . A contradiction. �
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Observe that, in a type structure T (G), player i believes event E if and only if the
support of i’s primary belief is a subset of event E; that is, for ti ∈ Ti, β0

i (ti) (E) = 1
iff supp β0

i (ti) ⊆ E where supp β0
i (ti) denotes the support of distribution β0

i (ti) (cf., e.g.,
Zamir and Vassilakis [82]). For µ ∈∆ (S−i) define

BRi (µ) = {si ∈ Si : Ui(si, µ) ≥ Ui(s
′
i, µ) ∀s′i ∈ Si } ;

for Z−i ⊆ S−i define

BRi (Z−i) = {si ∈ Si : ∃µ ∈∆ (S−i) s.t. µ (Z−i) = 1 and si ∈ BRi (µ)} .

Proof of Proposition 4. (a) Assume, in negation, that projS

(
◦
< ∩ CB

◦
<
)
* R∗. By

Proposition 1 in Luo and Yang [53], there exists a reduction (product-set) sequence {Dτ}
such that R∗ =

⋂∞
τ=0Dτ with D0 = S and Dτ V Dτ+1 for all τ ≥ 0. Hence, there exists k

such that projS

(
◦
< ∩ CB

◦
<
)
⊆ Dk and projS

(
◦
< ∩ CB

◦
<
)
* Dk+1, where Dk+1 ⊆ Dk and

Dk V Dk+1 via J . That is, sJ /∈ Dk+1
J for some (s, t) ∈

◦
< ∩ CB

◦
< because Dk−J = Dk+1

−J .

Clearly, (s, t) ∈ CB
(
◦
< ∩ CB

◦
<
)
implies tJ ⊆ t ⊆

◦
<∩CB

◦
<, because t is the finest event

commonly believed by t. Therefore, s
(
tJ

)
⊆ Dk. Let J0 =

{
j ∈ J : sj

(
tJ

)
∩ Dk+1

j = ∅
}
.

We distinguish three cases.

1. |J0| = 0: Define AJ =
(
sj

(
tJ

)
∩ Dk+1

j

)
j∈J
. Obviously, AJ satisfies κ-Credibility at

(s, t) because Aj ⊆ sj( tJ ) ∀j ∈ J . We proceed to show AJ satisfies κ-Profitability
at (s, t). Apparently, for all j ∈ J and (s′, t′) ∈ tJ , fj

(
t′j
)
|
s−j

(
tJ

) = fj
(
t′j
)
|Dk−j

because f 0
j

(
t′j
) (

s−j

(
tJ

))
= 1 and s−j

(
tJ

)
⊆ Dk−j. Note that, supp f 0

j

(
t′j
)
∩

Dk+1
−j = supp f 0

j

(
t′j
)
∩
(
AJ\{j} × s−J

(
tJ

))
because supp f 0

j

(
t′j
)
⊆ s−j

(
tJ

)
and

s−J

(
tJ

)
⊆ Dk+1

−J . (i) If supp f
0
j

(
t′j
)
∩ Dk+1

−j 6= ∅ then fj
(
t′j
)
|
AJ\{j}×s−J

(
tJ

) =

fj
(
t′j
)
|Dk+1−j . By Profitability in Definition 4, it follows that if s

′
j /∈ Aj or fj

(
t′j
)
|
s−j

(
tJ

) 6=
fj
(
t′j
)
|
AJ\{j}×s−J

(
tJ

), then uj(s′j, fj (t′j) |
s−j

(
tJ

)) < uj(s
∗
j , fj

(
t′j
)
|
AJ\{j}×s−J

(
tJ

))

for some s∗j ∈ Sj. (ii) If supp f 0
j

(
t′j
)
∩Dk+1

−j = ∅ then fj
(
t′j
)
|
s−j

(
tJ

) 6= fj
(
t′j
)
|
AJ\{j}×s−J

(
tJ

).
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Since s−j

(
tJ

)
⊆ Dk−j and

(
AJ\{j} × s−J

(
tJ

))
⊆ Dk+1

−j , there exists a CPS µ| ∈
∆∗Dk (S−i) such that µ|Dk−j = fj

(
t′j
)
|
s−j

(
tJ

) and µ|Dk+1−j = fj
(
t′j
)
|
AJ\{j}×s−J

(
tJ

).
By Profitability in Definition 4, it follows that Uj(s′j, fj

(
t′j
)
|
s−j

(
tJ

)) < Uj(s
∗
j , fj

(
t′j
)
|
AJ\{j}×s−J

(
tJ

))

for some s∗j ∈ Sj.

2. |J0| > 1: Define ÃJ = Dk+1
J0 ×

(
sj

(
tJ

)
∩ Dk+1

j

)
j∈J\J0

. By Lemma 2 in Luo

and Yang [53], for all τ ≥ 0, BRi

(
Dτ−i

)
⊆ Dτi ∀i ∈ I. Hence, for all j ∈ J0,

Ãj ⊇ BRj

(
ÃJ\{j} × s−J

(
tJ

))
because

(
ÃJ\{j} × s−J

(
tJ

))
⊆ Dk+1

−j . Let AJ ×

s−J

(
tJ

)
be the (nonempty) set of strategies surviving iterated elimination of never-

best responses for all players in J0 starting from ÃJ × s−J

(
tJ

)
. Hence, Aj =

BRj

(
AJ\{j} × s−J

(
tJ

))
∀j ∈ J0 and Aj = Ãj ∀j ∈ J\J0. We proceed to show AJ

satisfies κ-Profitability and κ-Credibility at (s, t). Note that, s−j

(
tJ

)
∩ Dk+1

−j = ∅
∀j ∈ J because |J0| > 1.

κ-Profitability: Since s
(
tJ

)
⊆ Dk V Dk+1 via J and s−j

(
tJ

)
∩Dk+1

−j = ∅ ∀j ∈ J ,

by Profitability in Definition 4, ∀j ∈ J ∀s′j ∈ sj

(
tJ

)
and ∀µ| ∈ ∆∗

s

(
tJ

) (S−j), we

have uj(s′j, µ|
s−j

(
tJ

)) < uj(s
∗
j , µ|Dk+1−j ) for some s∗j ∈ Sj. By

(
AJ\{j} × s−J

(
tJ

))
⊆

Dk+1
−j , for all j ∈ J and (s′, t′) ∈ tJ , Uj

(
s′, fj

(
t′j
)
|
s−j

(
tJ

)
)
< Uj

(
s∗j , fj

(
t′j
)
|
AJ\{j}×s−J

(
tJ

)
)

for some s∗j ∈ Sj.

κ-Credibility: For j ∈ J0, sj
(
tJ

)
∩Aj = ∅ and hence supp f 0

j (tj)∩
(
AJ\{j} × s−J

(
tJ

))
=

∅ because |J0| > 1 and supp f 0
j (tj) ⊆ s−j

(
tJ

)
. Note that, Aj = BRj

(
AJ\{j} × s−J

(
tJ

))
∀j ∈ J0 and Aj ⊆ sj

(
tJ

)
∀j ∈ J\J0. Thus, AJ×s−J

(
tJ

)
is credible from s

(
tJ

)
via J in Definition 4. Since coalition J is BRCD at t, κ-Credibility is satisfied.

3. |J0| = 1 (with J0 = {j0}): Let dj0 ∈ BRj0

fj0 (t′j0) |(sj( tJ )
∩Dk+1j

)
j∈J\J0

×s−J
(
tJ

)
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for some t′j0 ∈ tj0
(
tJ

)
. Similarly, by Lemma 2 in Luo and Yang [53], dj0 ∈ Dk+1

j0 .

Define AJ = {dj0} ×
(
sj

(
tJ

)
∩ Dk+1

j

)
j∈J\J0

. We proceed to show AJ satisfies κ-

Profitability and κ-Credibility at (s, t).

κ-Profitability: For all j ∈ J , if j 6= j0 then s−j

(
tJ

)
∩ Dk+1

−j = ∅ and hence it is

similar to κ-Profitability in Case 2; if j = j0, then s−j

(
tJ

)
∩ Dk+1

−j 6= ∅ and hence
it is similar to κ-Profitability in Case 1.

κ-Credibility: By construction, dj0 ∈ BRj0

(
fj0
(
t′j0
)
|
AJ\J0×s−J

(
tJ

)
)
for some t′j0 ∈

tj0
(
tJ

)
, and hence κ-Credibility is satisfied.

That is, we can always find a AJ ⊆ Dk+1
J satisfying κ-Profitability and κ-Credibility in

Definition 2 at (s, t). Thus, (s, t) ∈
◦
< implies sJ ∈ AJ ⊆ Dk+1

J . A contradiction.

The road map for the proof of Proposition 4(b). We construct a type structure
T (G) =

(
I, (Si, ui)i∈I , (Ti, βi)i∈I

)
such that, for every type profile t ∈ T and coalition J , the

minimal state subspace tJ = R∗ × T , where R∗ is the set of the c-rationalizable strategy
profiles in game G. More specifically, we construct, in two steps, a finite type space Ti
by identifying each ti ∈ Ti with a “coherent” infinite hierarchies of CPS beliefs (where
an arbitrary order belief in the belief hierarchy specifies i’s CPS belief about not only the
opponents’lower-order beliefs and using strategies, but also about his own lower-order beliefs
and using strategy).
First, we construct a finite set of i’s first order CPS beliefs T 1

i , which is comprised of
three kinds of first order CPS beliefs in ∆∗ (S): (1) the first order “anchoring” belief ν̂1|
such that the primary probabilistic belief has a uniform distribution on R∗, (2) i’s first order
blocking beliefs for the purpose of the “profitability” requirement, and (3) i’s first order
BRCD beliefs for the purpose of the “credibility” requirement. The third kind of beliefs
purports to accommodate the “belief-richness”condition in an analytical framework. In the
construction of T 1

i , ri ∈ R∗i can be supported as a best response by some ν1| in T 1
i .

Second, we construct the desirable types by specifying higher order beliefs in Ti (where
Ti has exactly the same cardinality of T 1

i ). As usual, the “coherency”criterion is respected
for the infinite hierarchies of CPS beliefs. The novelty is that, we require (i) the second order
“anchoring”belief ν̂2| ∈ ∆∗ (S × T 1) to assign a uniform distribution on R∗ × T 1 (in terms
of the primary primary probabilistic belief), and (ii) i’s other second order belief ν2| 6= ν̂2|
to assign (marginal) probability one to the “anchoring”belief ν̂1|. Higher order beliefs are
constructed in a similar way.
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We finally verify R∗ =projS

(
◦
< ∩ CB

◦
<
)
in this constructed type structure T (G).

Proof of Proposition 4(b). We construct a finite type structure T (G) =
(
I, (Si, ui)i∈I , (Ti, βi)i∈I

)
such that, for every type profile t ∈ T and every coalition J ⊆ I, tJ = R∗ × T . For any
given player i ∈ I, we construct a finite type space Ti by identifying each ti ∈ Ti with a
“coherent”infinite hierarchies of CPS beliefs in two steps.

Step 1. Construct the set of i’s 1-order belief T 1
i , which is comprised of three kinds of first

order CPS beliefs in ∆∗ (S) as follows.
(1) i’s first order “anchoring”belief. Define i’s first order “anchoring”belief ν̂1| ∈ ∆∗ (S)

such that ν̂1|S is a uniform distribution on R∗.
(2) i’s first order blocking beliefs. Let A = AJ×R∗−J be a deviation fromR∗ via coalition

J . If ri ∈ R∗i and there exists µ| ∈ ∆∗R∗ (S−i) such that (i) ri /∈ Ai or µ|R∗−i 6= µ|A−i and (ii)
Ui(ri, µ|R∗−i) ≥ Ui(si, µ|A−i) ∀si ∈ Si, then we pick one such CPS µ| for ri and AJ . For this
pair (ri, AJ), define i’s first order blocking belief ν1| ∈ ∆∗R∗ (S) such that margS−i ν

1| = µ|.
(In the case of J = {i}, if ri ∈ R∗i \Ai, there is i’s first order blocking belief ν1| such that
ri ∈ BRi

(
margS−i ν

1|s
)
, because R∗i ⊆ BRi

(
R∗−i

)
.)

(3) i’s first order BRCD beliefs. Let A = AJ ×R∗−J be a deviation from R∗ via coalition
J . If ai ∈ Ai\R∗i and there exists µ| ∈ ∆∗R∗ (S−i) such that ai ∈ BRi

(
µ|A−i

)
, then we pick

one such CPS µ| for ai and AJ . For this pair (ai, AJ), define i’s first order BRCD belief
ν1| ∈ ∆∗R∗ (S) such that margS−i ν

1| = µ|.
Let

T 1 ≡ ×i∈IT 1
i and Ω1 ≡ S × T 1.

Step 2. Construct the set of i’s higher-order “coherent”CPS belief hierarchies T k+1
i for

all k > 1. Assume inductively that T ki , T
k and Ωk are defined. (We decree Ω0 ≡ S.) For

t̂ki =
(
ν̂`|
)k
`=1

in T ki , define i’s (k + 1)-th order belief ϕ
(
t̂ki
)

= ν̂k+1| ∈ ∆∗
(
Ωk
)
such that

1. ν̂k+1| ∈ ∆∗R∗×Tk
(
Ωk
)
;

2. [Coherence] margΩk−1 ν̂
k+1| = ν̂k|;

3. ν̂k+1|Ωk is a uniform distribution on R∗ × T k.

For tki =
(
ν`|
)k
`=1

in T ki \
{
t̂ki
}
, define i’s (k + 1)-th order belief ϕ

(
tki
)

= νk+1| ∈ ∆∗
(
Ωk
)

such that

1. νk+1| ∈ ∆∗R∗×Tk
(
Ωk
)
;
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2. [Coherence] margΩk−1 ν
k+1| = νk|;

3. margTki ν
k+1|Ωk

(
t̂ki
)

= 1.

Let
T k+1
i ≡

{
tk+1
i =

(
ν`|
)k+1

`=1
: tki =

(
ν`|
)k
`=1
∈ T ki and νk+1| = ϕ

(
tki
)}

denote the set of “i’s (k + 1)-order “coherent”CPS belief hierarchies.”Let

T k+1 ≡ ×i∈IT k+1
i and Ωk+1 ≡ S × T k+1.

Finally, let

Ti ≡
{
ti =

(
ν`|
)∞
`=1

: ∀k ≥ 1, tki =
(
ν`|
)k
`=1
∈ T ki and νk+1| = ϕ

(
tki
)}

be the set of infinite hierarchies of i’s “coherent”CPS beliefs. By our construction, Ti is
finite and has the same cardinality of T 1

i . For each ti =
(
ν`|
)∞
`=1
∈ Ti, there is a CPS belief

ν| ∈ ∆∗ (S × T ) such that margΩk−1 ν| = νk| for all k ≥ 1 (cf. Battigalli and Siniscalchi
[15, Proposition 1]). Define a (continuous) mapping βi from Ti to ∆∗ (S × T ) by letting
βi (ti) ≡ ν|.
To accomplish our proof, it remains to verify that the constructed type structure T (G)

satisfies BRCD andR∗ =projS

(
◦
< ∩ CB

◦
<
)
. We proceed to show the minimal state subspace

tJ = R∗ × T for all t ∈ T and coalition J . Let j ∈ J . If tj = t̂j is j’s “anchoring type”
in Tj, then by the construction of t̂j, β0

j (tj) is a uniform distribution on R∗ × T and hence,
tJ = R∗ × T . If tj 6= t̂j, then by the construction of tj, margTj β

0
j (tj) assigns probability

one to t̂j. Therefore, tJ = R∗ × T ∀t ∈ T .
To see BRCD, we need to show all credible deviations from R∗ are κ-credible in T (G).

Consider a type profile t ∈ T and a coalition J ⊆ I. Let A = AJ × R∗−J be a credible
deviation from R∗ = s

(
tJ

)
via J . For each j ∈ J and aj ∈ Aj\R∗j , by our construction in

Step 1(3), there exists j’s first order BRCD belief ν1| ∈ T 1
j such that aj is a best response

to margS−j ν
1|A = margS−j ν

1|
AJ×s−J

(
tJ

). By the construction of Tj, there is t′j ∈ Tj =

tj

(
tJ

)
such that fj

(
t′j
)

= margS−j ν
1|. That is, BRCD is satisfied.

To see R∗ =projS

(
◦
< ∩ CB

◦
<
)
, we show

◦
< = R∗ × T ; i.e., every coalition J is Bayesian

rational at every state (s, t) ∈ R∗ × T . Suppose, in negation, that some coalition J is not
Bayesian rational at state (s, t). Then, there is a (nonempty) product subset AJ ⊆ SJ
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such that sJ /∈ AJ and, moreover, κ-Profitability and κ-Credibility hold in Definition 2.
Clearly, AJ ×R∗−J is a credible deviation from R∗ because κ-Credibility implies Credibility
in Definition 4. By our construction, AJ × R∗−J is also a profitable deviation from R∗.
(Otherwise, there exist j ∈ J , rj ∈ R∗j and µ| ∈ ∆∗R∗ (S−j) such that (i) rj /∈ Aj or
µ|R∗−j 6= µ|A−j and (ii) Uj(rj, µ|R∗−j) ≥ Uj(s

′
j, µ|A−j) ∀s′j ∈ Sj. By our construction, there

exists (r, t′) ∈ tJ = R∗ × T such that (i) rj /∈ Aj or fj
(
t′j
)
|R∗−j 6= fj

(
t′j
)
|A−j and (ii)

Uj(rj, fj
(
t′j
)
|R∗−j) ≥ Uj(s

′
j, fj

(
t′j
)
|A−j) ∀s′j ∈ Sj. That is, κ-Profitability fails to hold for

AJ .) Therefore, R∗ V AJ × R∗−J 6= R∗, contradicting the fact that R∗ is a CRS. Thus,
◦
< = R∗ × T .
By our construction, for every i ∈ I and (s, t) ∈ R∗ × T , ti assigns probability one to

R∗× T and thus, (s, t) ∈
◦
<∩B

(
◦
<
)
. Therefore, R∗× T ⊆

◦
<∩B

(
◦
<
)
⊆
◦
< = R∗× T ; i.e.,

◦
<∩B

(
◦
<
)

= R∗ × T . Repeat this argument,
◦
<∩Bn

(
◦
<
)

= R∗ × T for all n ≥ 1. Hence,(
◦
< ∩ CB

◦
<
)

= R∗ × T .�

Proof of Corollary 1. (a) Let S∞ = ∩k≥0S
k (with S0 = S) denote the outcome of iterated

elimination of strictly dominated strategies (IESDS) in G. Then, R = S∞. Apparently,
projS (< ∩ CB<) ⊆ S0. We assume projS (< ∩ CB<) ⊆ Sk for some k > 0. We inductively
show projS (< ∩ CB<) ⊆ Sk+1. Let (s, t) ∈ < ∩ CB< and i ∈ I. By Proposition 1(a), si ∈
BRi (t

′
i) for some (s′, t′) ∈ ti . Because (s′, t′) ∈ ti ⊆ t ⊆ CB<, (s′, t′) ∈ BI (< ∩ CB<) ⊆

Bi (< ∩ CB<); i.e., β0
i (t′i) (< ∩ CB<) = 1. By the induction hypothesis, f 0

i (t′i) ∈ 4Sk−i.
Since si ∈ BRi (t

′
i), si ∈ Sk+1

i . Therefore, projS (< ∩ CB<) ⊆ ×i∈IprojSi (< ∩ CB<) ⊆
Sk+1. Thus, projS (< ∩ CB<) ⊆ R.
(b) With the restriction of singleton coalitions, the notion of Bayesian c-rationalizablility

is equivalent to the notion of rationalizablility; that is, R = R∗. By the construction in the
proof of Proposition 4(b), we can find a (finite) type structure such that projS (< ∩ CB<) =
R. �
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